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A~tract--The same approach used by the authors in the context of advancing and receding contact lines 
is applied to the case of liquid-liquid contact lines. The result is an ordinary differential equation whose 
solution provides an approximate description of the shape of a moving meniscus. It is shown that a system 
with a viscosity ratio of 10 3 or more may be regarded as being a purely advancing/receding case. From 
the comparison of the present model with experimental results a dependence of the true contact angle on 
the line speed is inferred. 
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1. I N T R O D U C T I O N  

While in the past advancing liquid-gas contact lines have been studied extensively, contact lines 
formed between two viscous liquids (liquid-liquid contact lines) have received attention only in 
recent years. For a review article on dynamic contact lines see for instance Dussan V. (1979) or 
de Gennes (1985). 

When a viscous liquid advances over a smooth homogeneous solid displacing a gas of negligible 
viscosity, viscous forces have a strong influence on the meniscus shape, especially close to the wall. 
The meniscus profile has been studied using methods based on perturbation techniques (Hansen 
& Toong 1971; Huh & Mason 1977; Greenspan 1978; Kafka & Dussan V. 1979; Neogi & Miller 
1982; Hocking & Rivers 1982; Cox 1986; de Gennes et al. 1990), or using a direct numerical 
(finite-element) solution (Lowndes 1980). If the classical concepts of viscosity and surface tension 
are maintained up to the contact line a singularity arises at the contact line. This singularity is often 
removed by supposing the liquid to slip in a small region near the contact line. Various slip models 
have been used, the mutual differences having only a minor influence on the total meniscus shape. 
An alternative approach to the hydrodynamic problem concerned has been developed by Boender 
et al. (1991) (henceforth referred to as paper I); this results in a second-order differential equation 
for the meniscus shape, based on a local-wedge approximation which is acceptable provided the 
meniscus inclination varies slowly with the distance from the wall. The singularity is avoided by 
taking account the fact that, at very small distances from the wall (of the order of molecular 
dimensions), the continuum concepts break down. At this distance the meniscus inclination reaches 
its final value, the true contact angle. In recent years the breakdown of continuum hydrodynamics 
has become a more and more popular solution to the singularity problem. Thompson & Robbins 
(1989) showed in a molecular dynamics study, that slip at the contact line appears to be associated 
with the breakdown of local hydrodynamics at molecular scales. 

The approach to the hydrodynamic problem developed in paper I has been used by Chesters & 
van der Zanden (1992) (henceforth referred to as paper II) to describe receding contact lines, where 
a gas of negligible viscosity displaces a viscous liquid over a smooth homogeneous surface. A 
maximum "critical" capillary number at which a stable meniscus exists was established. A maximum 
speed of dewetting was also found in other investigations, both experimental and theoretical. 

tPresent address: Laboratory of Separation Technology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 
The Netherlands. 
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The hydrodynamic problem associated with a moving liquid-liquid contact line involves both 
an advancing and a receding fluid. It has been studied for a plane-interface geometry by Hub & 
Scriven (1971); once more a singularity arises at the actual contact line. A theoretical description 
for small line speeds, based on a perturbation approach and involving a matched asymptotic 
expansions technique, was given by Cox (1986). Measurements of the shape of a moving meniscus 
between two viscous liquids in a capillary tube have been performed by Fermigier & Jenffer (1988). 
The dynamic contact angle has been measured in very fine capillaries by Legait & Sourieau (1985) 
by measuring the pressure difference over a moving meniscus. A finite-element solution of the 
hydrodynamic problem for a number of line speeds and true contact angles has been given by Tilton 
(1988) and a finite-difference solution by Zhou & Sheng (1990), the singularity being avoided by 
introducing slip. Zhou and Sheng compared their predictions with the experimental results of 
Fermigier and Jenffer and concluded that, in some cases, the true contact angle at the wall depends 
on the contact line speed. 

The aim of this article is to apply the approach used in papers I and II to describe advancing 
and receding contact lines to the case of liquid-liquid contact lines. In section 2, the local inclination 
of the meniscus is obtained as a function of the distance from the wall as the solution of a 
second-order, ordinary, differential equation. In section 3 the critical capillary number is 
determined for various systems. In section 4 the question is examined under which conditions the 
viscosity of the advancing or receding liquid may be neglected, so that the situation reduces to the 
purely receding or advancing case. Finally a comparison is made between the present model and, 
on the one hand, the finite-element solution of Tilton and the finite-difference solution of Zhou 
& Sheng (section 5) and, on the other, the experimental results of Fermigier & Jenffer (section 6). 
The latter comparison leads to an implied variation of the true contact angle as a function of line 
speed. 

2. T H E  E Q U A T I O N  G O V E R N I N G  A S T E A D I L Y  M O V I N G  M E N I S C U S  

B E T W E E N  T W O  V I S C O U S  L I Q U I D S  

Plane geometry 
The stream functions ~R and kv A of creeping liquid flows in two plane complementary wedges 

(one with wedge angle ~o) with a constant velocity U prescribed on one boundary (Figure l) have 
been given by Huh & Scriven (1971) in polar coordinates p and 0 as 

~R(p, 0)---- Up(aRsinO + bRCOS 0 +cRO sin0 +dRO cos0) [1] 

and 

t/'tA(p, 0) = Up(aASinO + bACOS 0 +CAO sin0 +dAO COS 0). [21 

0=~o 

liquid R liquid A 

P 

O =180°. / / / / / / / / / / i / / / / ~  =0° 
mild velocity U 

Figure 1. Viscous flow in plane complementary wedges adjoining a moving solid boundary. 
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Figure 2. Definition of the variables describing a liquid-liquid meniscus. 

For the coefficients aR . . .  dA see the appendix (the subscripts R and A denoting receding and 
advancing). Using standard methods in fluid mechanics the pressures p in the liquids at the interface 
are found to vary (along the interface) as 

Op = U (CR sin ~o + dR COS tp) [31 

and 

Op = U (CA sin ~o + dA cos ~0) [4] 

where #R and PA are the respective liquid viscosities. The deviatoric component of the normal stress 
is zero. From [3] and [4], it follows that the pressure difference gradient at the interface is given 
by 

O(PR -- PA) = U ~ (CR Sin tp + dR COS tp ) -- U ~ -~ (cA sin tp + dA cOs tp [5] 

A moving meniscus between two parallel plates may be described by the coordinates r and tp 
(figure 2). In this case the wedge angle tp varies along the meniscus. Following the approach 
developed in papers I and II, the local pressure difference gradient d(PR -PA)/t~s (where s denotes 
arc length along the meniscus) will nevertheless be approximated by that at the interface between 
two plane wedges having the local inclination ~o: 

O(PR -- PA) = u ~ -  (CR Sin tp + dR COS tp ) -- U ~ (cA sin tp + dA cOs tp [6] 

Denoting the distance from the wall by x, [6] may be rewritten as 

a(PR --PA) = U 2 sin ~0 (/.LR C R sin tp + I~RdR COS ~O -- #ACA sin tp --/~AdA COS ~0). [7] 
~ X  X 2 

The pressure difference PR --PA is balanced by the interfacial tension (r according to Laplace's 
law: 

a d~o dcp 
PR - -  PA = ~ = O" ~ = O" sin ~o d x '  [8] 

where R is the radius of curvature of  the meniscus (reckoned positive if the centre of curvature 
lies on the side of liquid R). The derivative of [8] substituted in [7] now yields 

d ( d~O)=u2S in~o  
d-x a sin tp-~x ~ [ / Z R C R S i n t  p +~RdRCOStp --/~ACASin q) -- /~AdA COS (p]. [9] 

IJMF 20/4--H 
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Figure 3. Definition of the dynamic contact angle, q~d- 
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Figure 4. Variation of the true contact angle, ~Oo, with the 
curvature at the axis, ~c (~R/#A = 10-~, Ca = 5 x 10 -2 and 

~c = 15). 

Written in terms of the capillary number, Ca( =/~A U/a) and the viscosity ratio #a//~A, [9] becomes 

dx--(d sin ~o ~X)=2sin~gcaf#acasinq~+/~adRCOSqg--CASinq~--dAcos~Ol.X2 I_#A #A [10] 

Equation [10] is the required differential equation describing the shape of the meniscus. Notice 
that the "constants" CR • • • dA depend on ~0. The equation should constitute a good approximation 
provided ~0 varies "slowly", where slowly means something like: 

dga/rp <~ 1 [11] 
ds/w 

(w = the local wedge width--figure 2). 

Axisymmetric geometry 
In the manner described in paper I, [10] can be modified to take account of the second radius 

of curvature present in the axi-symmetric (capillary-tube) case, yielding 

( dq~ "~ 2sin~0 V~tR /~edacOS CAsin dACOS 1. [12] d sinq~ +c°sq~ = - - C a  casin~o+ ~0-  ¢p-  ~0 
d---x ~ a - x ~  x 2 LPA PA 

where a denotes the tube radius. 

Condition at the solid boundary 
The meniscus equations [10] and [12] apply sufficiently far from the wall where the fluids behave 

"classically", being described by the continuum equations together with a constant interfacial 
tension. Close to the wall (minimally at a distance of the order of molecular dimensions) the 
continuum approximation inevitably breaks down due to the molecular character of the liquids. 
As in papers I and II, this will be modelled in the simplest possible manner, namely that the classical 
description applies up to a distance 2 from the wall, of the order of a molecular dimension, at which 
point the final (true) value of the contact angle, ~0o, is attained. Note that the stress singularity 
otherwise encountered at x = 0 does not now arise. 

3. SOLUTIONS OF THE GOVERNING EQUATION 

In papers I and II only a small difference was found between the shapes of moving menisci in 
parallel plate and capillary-tube geometry, both in the advancing and in the receding case. 
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Figure 5. The dependence of the critical capillary number on 
the true contact angle, ~o 0, for various viscosity ratios 

(~o = 15). 

Figure 7. The dependence of  the critical capillary number on 
the true contact angle, ~o 0, for various system scales 

(/~R/flA = 10-1) • 

Consequently only the shape of a moving mensicus in a capillary will be examined in detail here. 
The analysis is however readily modified to the corresponding parallel-plate cases. 

The meniscus equation [12] is solved as indicated in paper I, making use of a logarithmic scale 
of distance 

= l n ( x / ~ ) ,  [13] 

by numerically integrating from the centre axis ~c to the distance 2 from the wall (¢ = 0) using a 
second-order finite-difference scheme. The subscript c will be used to identify a property on the 
axis of symmetry and the subscript 0 a property at ~ = 0. The integration procedure requires the 
values of ~oc and r/¢ where 

dq~ 
r/ = ~ .  [14] 

Symmetry requires that ~oc be 90 °. 

soq 

35~ 

90] 

4, l 

'-4 '-3 '-2 '-1 
los(Ca~) 

Figure 6. The dependence of  the critical capillary number on 
the true contact angle, ~o 0, for various system scales 

6aR/UA = 10-2). 
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log(Ca,~t) 
Figure 8. The dependence of  the critical capillary number on 
the true contact angle, ~0 0, for various system scales 

(#R/#^ = 10). 
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The apparent or "dynamic" contact angle in the advancing fluid, q~d, is taken as the angle which 
a circular meniscus, having the same apex height h as the actual meniscus, would make with the 
wall (figure 3): 

~ 2ha ] 
q~d = cos  La 2 + h2 j .  [15] 

In figure 4 the true advancing contact angle (q~0), obtained from the solution of [12], is presented 
as a function of qc(/~R/#a = 10 -1, Ca = 5 x 10 -2 and ~c = 15t). It is observed that q~0 exhibits a 
maximum (¢P0 . . . .  ) .  Evidently for ~00 > q~0 .... no solution to the meniscus equation [12] exists while 
for q~0 < ~00 .... there are two solutions. As in the receding case for the solutions having d~o0/drl~ > 0 
it was found that dq~/d(Ca)>0 (for constant q~0, ~c and /~R/#A) and consequently that 
dq~d/d(Ca) < 0, which is contrary to experimental findings. The solutions for which d~o0/dr/~ > 0 will 
therefore be ignored. These solutions are presumably unstable and consequently not encountered 
in reality. 

Another way of looking at this question is to note that for ~o 0 = q~0 .... the capillary number has 
a critical value (Ca = Ca,it) above which no solution to the meniscus equation [12] exists, a film 
of the receding fluid being left behind on the tube wall. 

In figure 5 the predicted relation between the critical capillary number and the true contact angle 
is presented for different values of/~R/#A (~c = 15). If the receding phase becomes more viscous the 
critical capillary number becomes smaller. For a purely advancing case (#R/#A = 0) a solution of 
the meniscus equation exists for all capillary numbers and all values of the true contact angle. The 
viscosity of the receding liquid thus limits the range of the possible capillary numbers for which 
a stable meniscus exists. The ~-dependence of the critical capillary number is presented in figures 6, 
7 and 8 for the cases, ]2R/ l /A  = 10 2 ~ R / I t A  = 10-t and #R/#A = 10 with ~c= 5, 10, 15 and 20. 

4. THE T R A N S I T I O N  TO P U R E L Y  A D V A N C I N G  OR R E C E D I N G  BEH A V IO U R 

Although a "purely" advancing/receding situation, corresponding to zero viscosity of the 
receding/advancing phase is formally unattainable a close approximation may be expected for 
sufficiently small/large values of the viscosity ratio /~R/PA" TO examine the transition to purely 
advancing behaviour, the predicted dynamic contact angle is presented in figure 9 as a function 
of the capillary number the viscosity ratios/~R/#A = 10 -~, 10 2, 10-3 and 0(tP0 = 45 °, ~c = 15). It is 
seen that while the effect of a receding viscosity/~R = 10 ~ #A may not be neglected, if/z R = 10 2#A 
the moving contact line can be modelled as an advancing contact line except for the higher capillary 
numbers. For /~R ~< 10 3#A the dynamic contact angle behaves as an advancing contact angle. 

The transition to purely receding behaviour is examined in figure 10, as a function of the receding 
capillary number (U < 0 and consequently Ca < 0) for the viscosity ratios/~A//~ = 10--~, IO 2, 10-3 
and 0(~o0 = 135 °, ~c = 15). While the effect of the advancing viscosity /~A = 10-~/~R may not be 
neglected, deviations from purely receding behaviour are again small for/~A = 10 2/~ R and negligible 
for /~A ~< 1 0 - 3 ] 2 R  • 

5. C O M P A R I S O N  WITH N U M E R I C A L  S O LU TIO N S  

The shape of a moving meniscus between two equally viscous liquids (#A//~R = 1) in a capillary 
has been computed for a number of cases by Tilton (1988) using a finite-element method. In figure 
11 the largest Ca cases treated by Tilton (crosses), for various true contact angles, are compared 
with the results obtained by integration of [12] from the tube axis to the wall (continuous lines)~t 
(¢c was chosen as 15). The value of r/c has been chosen to optimize the agreement with the results 
obtained by Tilton. 

tThe order of magnitude corresponding to tubes of order 1 mm, assuming 2 to be of the order of I nm. 
~tFollowing Tilton, the shape of the moving meniscus is presented here as 1 - x/a vs (h - h w a . ) / a .  
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Figure 9. The dependence of the dynamic advancing contact 
angle on the viscosity of  the receding fluid 

(~¢ = 15, ~a 0 = 45°). 
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Figure 11. Comparison of the solution of  the meniscus 
equation [12] (continuous lines) with the results obtained by 
Tilton (crosses) for the highest capillary numbers investi- 

gated and for various true contact angles. 

As noted earlier, Tilton avoided the singularity at the contact line by introducing slip close to 
the contact line while in this study the singularity was avoided by invoking the breakdown of the 
continuum description. Close to the wall this difference in boundary condition may therefore result 
in a poor agreement between Tilton's results and the results obtained here. 

In figure 11 it is observed that the agreement between the results obtained by Tilton and the 
solutions of meniscus equation [12] is excellent. This comparison however is not a critical test 
because there are only minor deviations form the spherical to be observed. Where these deviations 
occur, solutions of meniscus equation [12] are nevertheless in good agreement with Tilton's results. 
At the wall a small discrepancy is seen, which probably is the result of the different boundary 
conditions at the wall. For smaller capillary numbers the agreement may be expected to be better. 

The Ca-dependence of the shape of a moving meniscus between two equally viscous liquids in 
a capillary has also been investigated by Zhou & Sheng (1990) using a finite-difference method. 
They too avoided the singularity at the contact line by using a slip model. Their values of -h/a 

d 

'° t lo-2 

30 

1'-4 '-3 '-2 '-1 

log(--Ca) 

Figure 10. The dependence of  the dynamic receding contact 
angle on the viscosity of  the advancing fluid 
(~c = 15, ~o 0 = 135°). The line for #A//~R = l0 -3 almost co- 

incides with the line for /IA//a R = 0. 

I c = lo.664 
~o = 40° 

4 ] #A//.~R = 1 

0 

4 '-3 '-2 

log(Ca) 

Figure 12. Comparison of the results of  Zhou and Sheng 
(squares) with the predictions of  the present model (continu- 
ous lines, ~c = 10.664, ~00 = 40°,/aA//tR = l) giving the Ca- 

dependence of h/a (the meniscus height). 
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Figure 13. Capillary number dependence of the dynamic 
contact angle as measured by Fermigier and Jenffer (crosses) 
and as predicted by the meniscus equation [12] (continuous 

lines). Static contact angle = 100 ° and 12 °. 
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Figure 15. Variation of the true contact angle, cp0, with Ca 
required to obtain agreement between computations and 
experiments: crosses, the present model (2 = 10 -9 m), con- 

tinuous lines, computations of Zhou and Sheng. 

as a function of Ca are compared in figure 12 with the predictions of the model (#A/~R = 1). It 
is clear that the model can predict the macroscopic meniscus shape, except possibly for very large 
C a .  

A comparison with experimental results, as carried out in the next section, may be more revealing 
and may provide insight into the nature of the boundary condition to be used at the wall. 

6. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  R E S U L T S  

In figure 13 measurements performed by Fermigier & Jenffer (1988) of  the dynamic contact angle 
of  glycerol displacing a viscous silicon oil (/~R/~tA = 9  X 10 -~) and of silicon oil displacing air 
(/~R/#A = 3.6 x 10 -6) in a capillary are compared with the predictions of  the model presented here, 
based on the supposition that the true contact angle, ~00, is constant and equals the static contact 
angle. 2 was taken to be 10 -9 m.  The model exhibits agreement with these experimental results. 
In figure 14 further measurements of the dynamic contact angle of  glycerol displacing low and 

d 

l AB AB 
so ~ =  1o -I :..'" .~.  / /  

/ /  
9o~ : / / ~ _ =  r.~.1o-a 

45q 

I 

o i 
' - 4  

A: A = 10 - 1 0  m 

B: A = 1 0 - 9 m  

' -3  ' -2  '-1 '0 

log(Ca) 

Figure 14. Capillary number dependence of the dynamic contact angle as measured by Fermigier and 
Jenffer (crosses) and as predicted by the meniscus equation [12] (continuous lines). Static contact 

angle = 120 ° and 50 °. 
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moderate-viscosity silicon oils (#R/flA = 7.6 x 10-3 and #R/#A ~--- 10-i) are compared with the model 
(tp0=fps,)~ = 10 -9 and 10-1°m). While agreement between experiment and model could be 
improved by chosing a much smaller value of 2 the only physically realistic possibility is that in 
the cases in figure 14 the true angle at the wall depends significantly on the contact line speed, as 
was also concluded by Zhou & Sheng (1990). A line speed dependence of the true contact angle 
has also been suggested by Hoffman (1983). The true contact angle required to obtain agreement 
between model and experiments, taking ). = 10-9m, is shown in figure 15. A very similar 
conclusion, also shown in the figure, was reached by Zhou and Sheng. As might be anticipated, 
the implied true contact angle exhibits a strong dependence on the line speed. The mechanism of 
such line-speed dependence is however unknown and no explanation can at present be advanced 
for the fact that in the cases depicted in figure 13, such dependence is not in evidence. 

7. CONCLUSION AND DISCUSSION 

The approach developed earlier to resolve the hydrodynamic problem associated with liquid-gas 
contact lines is extended here to the liquid-liquid case. Since liquid-liquid contact lines always 
involve one receding liquid, they share the feature of receding liquid-gas contact lines that beyond 
a critical capillary number no stationary solution exists. 

The agreement of the model with the computations of Zhou and Sheng is excellent and suggests 
that the models' representation of the hydrodynamics is good. Another test is formed by the 
experimental results of Fermigier and Jenffer. The good agreement obtained in some, but not all, 
cases if it is assumed that ~0 = ~o~ confirms this impression but suggests that some other factor 
sometimes enters into the wall boundary conditions. While this additional factor may be a 
line-speed dependence of the true contact angle, there are other possibliities, such as effects of 
surface inhomogeneities or trace surfactants. 
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A P P E N D I X  

The coefficients a R . . .  dA were found by Huh & Scriven (1971) to be: 

aR = -- 1 -- rCCR -- dR 

be = --gdR 

C R ----- $2[S 2 - 6tp -t- R(q~ 2 - S2)]/D 

dR = S C [ S  2 - 6~0 + R(~o 2 - 52) - ~ tan ~o]/D 

a A = - - 1  - -  d A 

b A = 0 

CA = 8 2 [ 5  2 __ (~2 .31 - n ( ( ~  - -  5 2 ) ] / 0  

dA = S C [ S  2 - 62 + R(q~ 6 - S 2) - Rrc tan tp]/D 

where S = sin tp, C = cos q~, 6 = ~o - re, R =/~R//~A and 

D = ( S C  - q~)(62 - S 2) + R ( 6  - S C ) ( t p  2 - $2). 

It deserves mention that Huh and Scriven use the stream function ~ as in 

1 c~u O~v 
U p - -  - - - -  

p c 3 0 ' v ° - - ~ p '  

where vp and vo denote the velocities in the p and 0 direction, respectively. 


